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Abstract

The objective of this paper is to extend the classical discounted cash flow (DCF) model by developing a fuzzy logic system that takes
vague cash flow and imprecise discount rate into account. In order to explicitly discuss a more appropriate valuation model, uncertain
information will be fuzzified as triangular fuzzy numbers to quantify and evaluate the intrinsic value of a company’s financial asset under the
framework of DCF approach. We will find that the fuzzy discounted cash flow (FDCF) model proposed in this paper is one extension of
classical (crisp) model and should be more suitable to capture the elements of valuation than non-fuzzy models.
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1. Introduction

A clear thinking about valuation and skill in using a right
valuation method to guide business decisions are prerequi-
sites for success in current competitive environment.
Generally speaking, all management decisions are based
on some valuation model. It is therefore to the managers’
advantage to base their decisions on the model that most
accurately reflects company value. The discounted cash
flow (DCF) model, an economic model, studied by the
classical mathematics of finance describes some very
general ways to characterize the expression of its present
value (see, e.g. Brigham, 1992; Sharpe, Alexander, &
Bailey, 1999). In practice, the DCF model has become very
popular in valuation because it is most consistent with the
goal of long-term value creation, and it may capture all the
elements that affect the value of the company in a
comprehensive yet straightforward manner. It is also widely
applied in many fields such as project management,
insurance, and financial management. Some proponents of
the DCF approach have even suggested that the DCF model
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can provide a more sophisticated and reliable picture of a
company’s value than the accounting approach (Copeland,
Koller, & Murrin, 1994). Furthermore, the DCF approach is
strongly supported by research into how the stock markets
actually value companies since the stock is one of the
financial assets that take the dividend paying to be the
primary source of cash flow. In this way, if a investor is able
to accurately estimate the future cash-flow stream of a
financial asset and to match up an appropriate discount rate,
then they would easily compute the fair asset’s value, so as
to take an action (to sell or continuing to hold the asset).
However, such a classical DCF model does not
incorporate the uncertainties, which may be inherent in
the parameters used in it. Because various types of
uncertainties and imprecision such as discount rate and
future cash flows are inherent in the financial environments,
the uncertain parameters are usually regarded as a constant
or treated as a random variable that may be estimated by
past statistical data. In realistic situations, unfortunately,
such the estimation is often biased. For example, Shiller
(1981) applied DCF model to derive the upper and lower
bounds of fluctuation of stock prices, but the empirical
results showed that the real stock prices obviously went
beyond the scope. In addition, although some existing
literature has incorporated uncertainty into the related
fields of investment decision based on intuitive methods
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or a probabilistic approach (see, e.g. Brigham, 1992; Hurley
& Johnson, 1994; Liang & Song, 1994), and the uncertain
information is therefore estimated by using educated
guesses or other statistical techniques, there are the
disadvantages of depending too much on the intuition of
the decision maker and requiring the fulfillment of some
assumptions about probabilistic distributions.

Recently, some developments in fuzzy-financial math-
ematics have been applied to the valuation issues. Buckley
(1987) studied the fuzzy extension of the mathematics of
finance to concentrate on the compound interest law. Then,
Li Calzi (1990) investigated a possible general setting by
considering both compact fuzzy intervals and invertible
fuzzy intervals for the fuzzy mathematics of finance. Kuchta
(2000) also generalized fuzzy equivalents for methods of
evaluating investment projects. Furthermore, to observe the
investors’ behavior in the financial market with a compli-
cated and uncertain environment, investors are always
trying to rely on some ways to accurately predict the prices
of a specific financial asset, but often have less than
successful results. For this reason, several researchers
endeavored to propose a series of excellent studies based
on fuzzy techniques in order to valuate the stock market and
further to predict stock prices accurately. For example,
Dourra and Siy (2002) applied fuzzy information technol-
ogies to investments through technical analysis, and used
them to examine various companies to achieve a substantial
investment return. Kuo, Chen, and Hwang (2001) used
genetic algorithm based on fuzzy neural networks to
measure quantitative and qualitative effects on the stock
market. Wang (2002) proposed a fuzzy grey prediction
system to analyze stock data and to predict stock prices, and
then he employed fuzzy rough set system to predict the
stronger rules of stock price, achieving a higher degree of
accuracy (see, e.g. Wang, 2003). Nevertheless, the models
employed in their studies are much complicated and the
ordinary investors’ concerns still exist.

In view of the above, indeed, there is an opportunity to
improve the classical DCF model by using the advances in
mathematics and sciences of fuzzy set theory. Namely,
fuzzy reasoning is very effective in such environments.
Therefore, the purpose of this paper is to extend a classical
(crisp) DCF model that can be fed with a fuzzy system,
hoping to make it more applicable in practice. We start to
describe the DCF model in its classical form. Further, all
uncertain parameters will be given a fuzzified form in the
paper.

The rest of this paper is organized as follows. Section 2
states the preliminaries where we define the A-signed
distance method which is similar to Yao and Wu (2000),
and then employ it to formulate the fuzzy discount cash flow
(FDCF) model. The crisp DCF model will be surveyed in
Section 3 first. Then in Section 4, triangular fuzzy numbers
and their operations will be performed and discussed with
regard to the fuzzy valuation model. In Section 5, the results
derived from the fuzzy case in Section 4 will be compared to

that of crisp case with numerical operations, and then the
implications of the FDCF model are discussed in Section 6.
Finally, we give the conclusion remarks in Section 7.

2. Preliminaries

Before presenting the FDCF model based on the A-signed
distance method, the following definitions are provided in
advance with some relevant operations (see, e.g. Kaufmann
& Gupta, 1991).

Definition 2.1. A fuzzy set [a,b;a], a<b defined on
R = (—, ), which has the following membership func-
tion, is called a level « fuzzy interval.

o, a<x<bh,

0, otherwise.

:u'[a,b;a](x) = {

Definition 2.2. By Pu and Liu (1980), fuzzy point 4 is a
fuzzy set defined on R with the following membership
function:

o 1, x=a,
Ma(X) =
0, x+#a.
Definition 2.3. The triangular fuzzy number B is defined on

R with a membership function as follows, and denoted by
B=(a,b,c), where a<b<c.

xX—a
, a<x<h,
b—a
upx) = ¢ x’ b<x<e,
c —
0, otherwise.

Let F be the family of fuzzy sets defined on R, for each
D €F,, the a-cut of D is denoted by D(a) = {x|pz(x) >a} =
[DL(a),DU(a)] (0<a<1), and both DL(O) and DU(O) are
finite values. For each o« €[0,1], the real numbers DL(a),
Dy(«a) separately represent the left and right end points of
D(«a) and satisfy the conditions that both of Dj (), Dy(a)
exist in « €[0,1] and are continuous over [0,1].

Let D € F,, by decomposition theory, we have

b= osLo{gl o

where Ip, is the characteristic function of D(a). By
Definition 2.1, if x€D(a), then alp,(x)=a=
IU’[DL(D(),DU(OZ);a](x)’ and if x%D(C{), then OZID(a)(X)Z():
MWD, (e, Dy (o1 (X), therefore, we have

D= U alpy=_U_ Di@).Dy@:al. @1
Introducing the concept of Yao and Wu (2000), we
consider the signed distance and ranking on F and provide
Definitions 2.4-2.6 as follows:
For each A€(0,1), the A-signed distance of closed
interval [Dy (), Dy(a)] from origin 0 can be defined by
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R(AD, (@) +(1- 2)Dy (a),a)

v

D, Dy

AD, () +(1- 2)D, ()

D@  D,(0)

Fig. 1. a-cut [D; (), Dy(a)] and point AD; (a) + (1 — DDy (a) in [D; (), Dy(a)].

dy(IDy.(@), Dy(@)], 0; 2) = ADy. (&) + (1 — DDy(a), where
AD () + (1 — A)Dy(w) is a inner point in [Dy («), Dy(a)].
(See Fig. 1.)

Since for each a€[0,1], [Dy(a),Dy(a)] < [Di(),
Dy(); a] and 0 <> 0 are one-to-one mapping, the A-signed
distance of [Dy(a),Dy(e);a] from 0 can be defined
by  d([Dp(a), Dy(a); a, 0; 2) = do([Dy.(), Dy(a)], 05 )=
ADy () + (1 — D) Dy(w).

Foreach DEF, (0<a<]), DL(a), DU(a) is a function
of @ and continuous over [0,1], so the integral mean value of
the A-signed distance is

1
J A([Dy ()Dy(e): al, 0; Ndar
0

1
= J (ADy (@) + (1 — DDy(e)de. 2.2)
0

According to (2.1) and (2.2), we have the Definition 2.4
as follows.

Definition 2.4. (a) For each D € F, and each A€(0,1), the
A-signed distance from D to 0 is defined by

1

d(D,0; %) = J [ADy () + (1 — )Dy(e)]dax.
0

(b) When D = (a,a,a) = dis a fuzzy p0i1~1t at « and for all
a€[0,1], D (a)=Dy(a)=a, then d(@ 0;1)=a for all
A€(0,1).

Next, the arithmetic operations of level « fuzzy intervals
a€[0,1] are shown below:

[AL (@), Ay(@); al(H)[BL(a), By(a); o]

= [Ap(a) + By(o), Ay() + By(); a]. (2.3)

When 0<A; (a)<Ay(e) and 0< B (a) < By(w), we
have

[AL (@), Ay(@); al(X)[BL(a), By(a); o]
= [Ap(0)By (o), Ay()By(); o] (2.4)

Similarly, when 0<A;(a)<Ay(e) and 0< B ()<
BU(oz), we also have

[AL (), Ay(@); al(5)[BL(a), By(a); o
_ [AL(Q) AU(O() . a}
By(e) Bu(w)™ |
Additionally,

(2.5)

(kA (), kKAy(a); ] if k>0,
[kAy (@), kAp (a); ] if k<O.
(2.6)

Definition 2.5. Let A, BEF s and for each A€ (0,1), define
the metric p; by

p:(A, B) = |d(A,0;2) — d(B, 0; 1.

kO)IAL (@), Ay(); o] = {

Definition 2.6. For A, B € F, and each A€(0,1), relations
‘<, =’ on F; are defined by

A< Biff d(A,0; 1) <d(B,0; A);
A=Biff dA,0; 1) = d(B,0; ).
Using Definition 2.6 and the ordering relations <, =

defined on R, then the following Properties 2.7 and 2.8 can
be proved.

Property 2.7. ForA B € F, and each A€ (0,1), the ordering
relations <, = defined on F satisfy the law of trichotomy.
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Namely, one and only one of the three relations of A< B,
A =B, B< A must hold.

Property 2.8. For A, B, C €F, and each A€(0,1), the
ordering relations <, = defined on Fj satisfy the following
axioms:

(1) A< =4A; 5 ~
(2°)4 <=B, and B<=A, then A :B;~
(3°)A< =B, and B< =C, then A < =C.
From Properties 2.7 and 2.8, we know that the ordering
relations <, = on F| are linear order.

Property 2.9. For A, B, k €F, and each A€(0,1), the
following two characteristics hold:

(1°) d(A(+H)B,0; 1) = d(A,0; %) + d(B,0; );

(2°) d(kA,0; %) = k d(A,0; X).

Proof. (1°) By (2.3), we know

ADB = U [AL(@ + BL(0), Ay(e) + By(a); al,

then by Definition 2.4,
d(A(+)B,0; )
1
= JO [MAL (@) + Br(a) + (1 — H(Ay(a) + By(w)lda

=d(4,0; ) +d(B,0; 2.

(2°) By (2.6) and Definition 2.4, d(kA, 0; 2) = k d(A, 0; 1)
is proved. [

Property 2.10. For A, B, Ce F and each A€ (0,1), metric
P, satisfies the following three metric axioms:

(1°) p;(A,B) =0 iff A =B,

%) pi(4,B) > 0;

(3°) pa(A, B) + p;(B, C) = p;(A, ©).

Proof. (1°) and (2°) can be proved by Definition 2.6 and the

characters of the ordering relations <, = defined on R.
Because

p;(A, B) + p;(B, C)
= |d(A,0; ) —d(B,0; V)| + |d(B,0; ) — d(C,0; 2|
> |d(A,0; ) — d(C,0; )
= p;(A,C), (3°) holds. O

Remark 2.11. By Property 2.10, for each A€(0,1), (p;, F)
is a metric space in the fuzzy sense.

Remark 2.12. Let Fp = {d|a € R} be the family of all fuzzy
points on R = (—, ®). Obviously, FpC F, by Definitions
2.4 and 2.5, when @, b € Fp, for each A€(0,1), we have
d(@,0;)=a, db,0;2)=b, and p;(d,b)=|a— b|. When
a, b € R, by Definition 2.4, we have dy(a,0)=a, do(b,0)=b,
and py(a, b) = |dy(a,0) — dy(b,0)| = |a— b|. Thus, p, is

the metric function on R. Meanwhile, we know that d €
Fp< a€ R is one-to-one mapping from Fp to R and
satisfies the following relations:

(1°) For each A€(0,1), d(@,0;)=a=dya,0),
p:(@,b)=|a— b| = py(a,b), for all a, b € K.

(2°) For each A€ (0,1), the relation of three metric spaces
(R, pg)s (Fp.pa), (Fepn) is (R, pg) = (Fp, p;) € (Fy, py).
That is, metric space (Fj,p;) is one extension of real
metric space (R, pg).

3. Valuation by using the crisp DCF model

The crisp DCF model is a well-known approach to
valuation (see, e.g. Brigham, 1992; Copeland et al., 1994;
Sharpe et al., 1999), whereby estimated future cash flows
are ‘discounted’ at an interest rate (also called: ‘rate of
return’), that reflects the perceived riskiness of the cash
flows. The discount rate reflects two things: one is the time
value of the money (investors would rather have cash
immediately than having to wait and must therefore be
compensated by paying for the delay); the other is the risk
premium that reflects the extra return investors demand
because they want to be compensated for the risk that the
cash flow might not materialize after all. In other words, the
valuation based on the DCF approach is the future expected
cash flow discounted at a rate that reflects the riskiness of
the cash flow.

The generalized DCF model such as Fig. 2 describes the
return of a financial asset offering the investor a cash-flow
stream, and today’s intrinsic value is calculated as the
present value of an infinite cash-flow stream.

From Fig. 2, the present value at time ¢ for each time 7+,
j=12,... can be expressed as:

Dt+l

Ay =1
+1 1+ ko

Ay = Disa
Ut k) k)

D yr
(I + k) + k), (L + k)

Anr =

Therefore, the intrinsic value in a crisp model can now be
expressed as the present value of expected future cash flows
at time ¢ that is given by

n i
* 1
Vi = El [l lﬁ D, t=0,1,2,..., 3.1
i= j=

where

n: life of the asset.
V. the intrinsic value at time ¢ of an infinite cash-flow
stream.
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+ + + o
1 sl 142 BT ooy year
Cash flows Dy D1 Dy Dur
present value
at time t

At+1 (1 + kt+l)A1+1 = Dr+l

At+2 (1+k1+1 )(1+k1+2 )A

AI+T

t+2

=D,
(1+k1+1)(1 +k1+2)"'(1+k1+T)AI+T = DI+T

Fig. 2. Infinite cash-flow stream and present value at time 7.

D, ;: cash flow in period .

k;; discount rate at time ¢+, reflecting the riskiness of
the estimated cash flows; or required rate of return,
the investor considers the returns available on other
investments.

Formula (3.1) is a generalized DCF model in the sense
that the time pattern of D, ; should be a non-negative real
number. It means that D;; may be rising, falling, or
constant, or it may be fluctuated randomly. Generally
speaking, when the future cash flows of a company or an
asset follow a systematic pattern, some extensions and
applications from the basic model can be derived easily. For
example, the dividend discount model is a specialized case
of equity valuation and the value of a stock is the present
value of expected future dividends.

In real economic environment, the companies go through
life cycle. Such like some high-tech companies, their
operation usually have the following pattern with regard
to the economic cycle: during the early part of their lives,
the company’s growth rate is higher than the average level
of the economy’s growth; then match the economy’s
growth; and finally lower than that of the economy’s
growth. In other words, the cash flow (D) of a specific asset
for each year should depend on the individual company’s
growth rate (g). If the discount rate in each period is
supposed to equalize, meaning k=k =k,=---=kg="-",
and k is a positive real number, then (3.1) can be simplified
as

f D
Vo = Z A +k) (3.2)

t=1

where D,=D,_(1+g,). It means that D, is a non-negative
random variable with respect to g, In practice, unfortu-
nately, the investor cannot use (3.2) to calculate the intrinsic
value in its present form through crisp convergent formula,
so we assume that most of the investors would eventually
finance the asset at a default value after holding it for n
years. Namely, the specific asset has uncertain cash flows
during a certain time period n and finally sold at price P,,.
Hence, (3.2) can be modified by

* < Dt Pn
Yo _;(1 o T a TR 33

where D,=D,_(1+g,), t=1,2,...,n. Note that (3.3) is
usually regarded as a valuation model for the non-constant
growth stocks. Similarly, if g,=0 (i.e. fixed cash flows D,
such as the payments of interests) and k, P, are, respectively
regarded as the yields-to-maturity (YTM) and par value,
then (3.3) becomes a classical bond valuation model.

In this case, if g=g,=g,="-=g,="-+, and
lim P, =0,
n—o0

then we can get the special case of (3.3) as below:

"D P
V* — l t n
o = m (Z(l o a +k)”>

t=1

" Dy(1 " Dyl
=limz ol +8) _ Do(1 +9)

(1 + k) k—g (34)

where k> g. That is so-called the Gordon Model (see, e.g.
Gordon, 1962). Note that

lim — =0,

e (1 + k'

and £ is a positive real number. Moreover, if g=0, (3.4) can
be simplified as

% . X Dt Pn DO
Vo =1 =— 3.5

such a model is often used to evaluate the intrinsic value of
preferred stocks. In other words, both (3.4) and (3.5) may be
regarded as the special cases of (3.3).

However, when n is finite, it is quite difficult for typical
investors to precisely predict the future price P, at a certain
value for a long-term period, so the present value V{ in (3.3)
cannot be calculated directly. Also, it is difficult to suppose
that the investors can predict a large number of g,. That is
why the general case is usually restricted to two or three
stage models (Sorensen & Williamson, 1985).

4. Valuation by using the FDCF model

Due to the difficulties of precisely estimating the future
cash flows, the discount rate (or the required rate of return),
and the price at the nth year, the investors who apply
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the classical (crisp) DCF model to evaluate the intrinsic
value of a specific asset often need to make several
assumptions about the cash flow and the discount rate, and
further to estimate them by using educated guesses or other
statistical skills. For example, sometimes it is more realistic
for the investor to additionally estimate these parameters in
DCF model by linking the growth rate (g) with the other
financial data such as ROE, P/E ratio or pay-out, instead
estimating g directly (see, e.g. Leibowitz & Kogelman,
1994; Sorensen & Williamson, 1985).

On the other hand, regarding the acquisition of discount
rate (k) (or the required rate of return), it is usually derived
from the CAPM framework considering the risk factor,
market expected rate of return, and expectations about the
risk-free rate (Sharpe et al., 1999). However, since either the
financial data or g are uncertain, these magnitudes should be
more suitable to be directly considered as fuzzy numbers by
fuzzifying g and k in order to simplify the arithmetic
operations. Based on this, the fuzzy method defined in
Section 2 is a more effective tool to evaluate the intrinsic
value when future cash flows, discount rate, and growth rate
cannot be precisely estimated as well as the risks. In this
section, we will derive a FDCF model from Section 3 where
the crisp DCF model has been surveyed.

First, we recall the crisp DCF model mentioned in (3.3)
and let

_Z(1+k)’

ZZDO(1+g1)(1+g2)"'(1+gt) 4.1
= (1 +k) ’
P,
H= ,
(1 + k)"

where n> 1, then (3.3) can be simplified to write:
Vi =G+H. “4.2)

Next, we fuzzify Do, g (= L, k and P, as
triangular fuzzy numbers D), &js k, and P corresponding to

P, = (P, — w7, P,,P, + wy), 4.6)

where wi, w,, wj3, Wi, wWs, ws w7, and wg may be
appropriately determined by the decision maker to satisfy
the following conditions:

0<w; <Dy, 0<w,y; 4.7)
O0<wz<g, 0<wy, j=1,2,.. (4.8)
0<ws<k, 0<uwg; 4.9)
0<w;<P,, 0<uwy. (4.10)

Using (4.3) to (4.6) to fuzzify (4.1), we have

=1

X A(H)ENHA (K, (4.11)

H=P,(-)A(HK)", n>1, 4.12)

where the left and right end points of a-cut of [)0, g k, and
P, are

Do (a) = Dy — (1 — 0)w;(>0),
Dyy()

gi(@) = g — (1 — )w;(>0),

=Dy + (1 — 0)w,(>0);

gu(a) =g + (1 —)wu(>0) j =1,2,.

k(@) =k — (1 — @)ws(>0), @19
ky(e) =k + (1 = a)we(>0);

P,i(@) = P, — (1 — a)a;(>0),
Pu(a) = P, + (1 — a)wg(>0).

From (4.11) to (4 13) (2.3) to (2.6), the left and right end
points of a-cut of G, H can be written as

~ Dy =0 —a)w)1 + g — (1 —a)wi3)(1 + g — (1 —a)wy) (1 +g — (1 —a)wy)
GLa) = Z - ,
= 1 +k+ 01— a)we)
(4.14)
~ =D+ (1 =) + g + (1 —w)d + g + (1 — wy) (1 + g + (1 — a)wy)
GU(a) - Z n
— A +k—0—a)ws)
the crisp intervals [Dyo—w;,Do+ws], [gj— wj3.8;+ wjal, and
[k—ws,k+we], and [P,—w7,P,+ wg], respectlvely, and q P, — (1 — ),
then yield vl@) = (1 +k+ (1 —we)"’
(4.15)
DO = (DO — (,L)I,Do,DQ + (L)z), (43) 1:1 ( ) _ Pn + (1 — a)wg
VYT 0Tk — (1 — s
0. — . — 1, 85y + i1), .=1,2,...,t; 4-4
&= w88 T wp (44) By Definition 2.4 and (4.15), for each 2€(0,1), using -
signed distance method to defuzzify H, we have the
= (k — ws, k. k + we); 4.5) following three situations of H;
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for n>3,
Hi=d(H,0;2)

_J‘ { AP, —(I—a)wy) (1 —A)(Pn+(l—a)wg)}
ol H k(A=) (1 +k—(1—a)ws)"

A 1
=—<Pn+(1+k)ﬂ><
wg wg) \—n+1

_ —n+1 @ 1 —n+2
1+k) 1+ o2 (_n+2>[(l+k)

)[(1+k+(u6)”“

1—2
—(+k+we) "1+ —= (P
Ws

(=

(I =Nwyg 1 —n+2
SR

w3

(1 +k)“’8)

Ws

+1>[(1+k)”+‘ —(14+k—ws) "N

_(1+k_w5)_"+2]; 4.16)
for n=2,
Hi=d(H,0;2)

_J' { APy — (1 —a)wy)
o [+ k+ (1 — a)w)?

I=HP+ 1 — a)ws)} d
(1+k—(1 — )ws)?

=j<P2 +d +k)ﬂ> [(1+k+wg) ' =1+
We We

A(L)7 (OFS 1_/1 (OF —1
— (1 —— 2P+ +0ZE )
_ 1y, = Dwy _ Ws |
(1+k—ws) '+ o 1n<1 1+k>, 4.17)
forn=1,
Hi=d(H,0;))
S (1440 )—@
Wg ! (O 1+k (OFS
_1_/-{ wg i [OF3 _(]_}k)wg
- <P1+(1+k)w5>ln(1 1+k) o
(4.18)

For each A€ (0,1), in order to obtain the general result of
defuzzification of G by using A-signed distance method, we
let

te{l,2,...n}, 6=1—q,
and
F.(ay,ay,...,a,11,b1,by,...b,11,c.€)
:Jl (a;(1 —a) +b)ay(1 =) + b))~ (a4 (1 —a)+br+1)da
0 (c(1—a)+e)
1
:JO (a10+hl)(a2€(_(|;ﬂb_2|_)e)f(at+10+bt+l) (4.19)

From (4.19), we conduct the coefficient of 6" of (a,6+

b)(a0+by)---(a,10+b, ) as below:

Let re{1,2,....t.+1}, and A, is a set of (i1,in,...,0s» i1 1,

[r42,---,it+1) satisfied the following conditions (1° ), (2.

(1°) 1< <ip<<i,<t+1 and 1<i,4 <ign<
<y <t+ 1

(2°) there are no same value in i1,iz,...,0p et 1slrt25ee s
i,+1, and they are combined as {1,2,...,t+1}.

Thus, A, has

t+1Y\

. =
elements in all, and ), represents the sum of a; a

a; b; b i;+1) €A, then

i1 Vi, " bl,H in (l17127 ol r+17ir+27--~7
the coefficient of 8" can be denoted as

(t+1)!
rlc+1—r)!

L1 *

Zr a; a;, - a; bz,ﬂb

iry2

Again, we let z=cf + ¢, then the numerator of integration
in (4.19) is

(a0 +by)ayd +by)---(a;410 + b,41)
=bybybyy + ) 1a;,by,by by 0+
+> a;a;,a; b b b 0+
+> a4, a; by b 0 !
+>a;, aib; 0 taya,- ‘a4, 0!
:blbzmbtﬂ + 3 1a; bbby, (5) + -

+ Z” a;a, - q; b1r+1 bl,+z biz+1 (zc;e)r t+

i1
+> a4, a; b b; (Te)t

41

_ +1
+ 3 aap, ayb,, (59 +aaya (379)
1 +1 t
= |c byby-++byyy + 'Yy a; bbb, (z—e)
oot a4 by by b
r r
X Z (_E)r_kzk + -+ C2 El—l a,-lal-z "'a,-,_lbilbim
k=0 \ k
—1 [t—1
Xy (=o' e a a0 by,
k=0 k
t t
XZ (—e) * +ajaya,,
k=0 \ k
+1 [t+1 1
XY . (—ef "1 | = (). (4.20)
k=0
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By (4.19), (4.20) and z=cf+ e, we obtain
when r€{1,2,...,n},

F,(al,az,...,a,_H,bl,bz,...b,_H,c,e)

1 cte 1
EFL ?h(z)dz

1 c+e 1
_ t —t
_FJ ¢ biby bz
e

13

+c'y a; b, b;,
t+1—r

t+c Zrai,aiz

,biH](Z*lJr] _ezfl) + ...

a; b;  b; b

r+1 7 42 li+1

r (r
XZ( >(_e)rkzt+k+_”
k=0 \ k

2
+c Zt—lailaiz a; b
k=0

+tedliaa, ,H, ()

+1 /t+1
+a102"'az+1z (—e)T1kg =4k | gy
k=0 k

1 s L
_Cz+2 T_Hb1b2~--b,+1((c+e) —e )
+Clzl ailbizbl; .'.biH.] [%H((c + e)—t+2 _ E_H—z)

t+1((c+€) e ’+1)] +oe

t+1—r
+c Zrailaiz ai,bl}ﬂ bir+2 biz+1

r r 1
vk —t+k+1
x;<k>( e) <7_H_k+1>((c+e)

b. b,

Ut

=y t—1—k 1
;( . >(_e) (—t+k+1>

—e"+’<+‘)+1n(1 +5)
e

—1+k+1 2
—e Y+t et a0,

b1

X

X ((C + e)—z+k+1

t—2
_ 1
+C2tazlalz ' l, l,+1 [Z( )(—e)t k(m

k=0

X((c+e) =TT —retn(145) +e
e

= t+1 +1—k 1
.
raaya ) ) <m)

+1

X((c+e)—f+k+1 _e—l‘+k+1)+ (t
t—1

-1 /t—1
l,+ Z( >( e)t 1- kZ—t+k

)

>ezln(1+§)

A+l +1—k 1
+; k (=o) (—t-l—k-l—l)

e—f+k+1) .

X ((c+e) T — 4.21)

Then, by (4.14), (4.19), and (4.21), for eactl A€(0,1),
using A-signed distance method to defuzzify G, then we
obtain

1
G =d(G,0;2) = J [AGy(a) + (1 — HGy(a)]lda
0

= Z[AFI(_(,L)l, W13, — W3, ...y _CUI3,D0, 1+ 81
=1
1+g5,...1 +g,wg 1 +k)
+ (1 - /-{)F;(wb W14, W24, ~~7(‘)t4,D0, 1+ 81»
1+ .1+ g, —ws, 1 +K). (4.22)

Therefore, by (4.1) to (4.6), (4.11), (4.12), (4.16) to
(4.18), (4.22) and Property 2.9, we can obtain the following
Theorem 4.1.

Theorem 4.1. Utilizing (4.3) to (4.6) to fuzzify (4.1), we
have

(1°) fuzzy intrinsic value \78 = G(+)H where G in (4.11),
Hin (4.12);
(2°) the estimation of intrinsic value in the fuzzy sense is

Vo, =d(V5,0; 4) = d(G,0; 1) + d(H,0; ) = H} + G,

where H} in (4.16) to (4.18), G} in (4.22).

Remark 4.2. The relation between Theorem 4.1 and crisp
case is discussed in Section 6.1.

5. Numerical examples

In this section, we will illustrate the methodology given
in the preceding sections to evaluate the intrinsic value with
the following example under different A levels (1=0.5, 0.2,
0.8).

In the event that we would like to hold an asset for n
years, and then sell it at a expected price P,, so we can
employ Theorem 4.1 to compute the intrinsic value in the
fuzzy sense. Let n=1,2,3, Dy=$2 (measuring unit in US
Dollar), k=6%, g=3%, P,=$35 (measuring unit in US
Dollar). In addition, we can appropriately determine the
values of wq, w,, Wy, W, Ws, We, w7 and wg. Furthermore, in
order to find the relative errors between fuzzy case (\7&) and
crisp case (Vy), we let

r= Lx 100%,
VO

and then we show the numerical results in Tables 1-3.



Table 1
The numerical comparisons of crisp case and fuzzy case for n=3 with different 4 levels

Crisp Dy k 81 82 83 P, Ve
case 2 0.06 0.03 0.03 0.03 35 35.053
Fuzzy Dy, K gn 8 g5 " W) [0} w13 w23 w33 o W24 W34 ws We w7 ws Vor (%)
case 2 0.06 0.03 0.03 0.03 35 0 0 0 0 0 0 0 0 0 0 0 0 35.053 0.153
fori= 2 0.06 0.03 0.03 0.03 35 0.01 0.01 0 0 0 0 0 0 0 0 0.01 0.01 35.054 0.153
0.5 1.9775 0.06 0.03 0.03 0.03 35 0.1 0.01 0 0 0 0 0 0 0 0 0.01 0.01 34926 —0.211
2.0225 0.06 0.03 0.03 0.03 35 0.01 0.1 0 0 0 0 0 0 0 0 0.01 0.01 35.181 0.518
2 0.06 0.0278 0.03 0.03 35 0.01 0.01 0.01 0 0 0 0 0 0 0 0.01 0.01 35.029 0.082
2 0.06 0.03 0.0278 0.03 35 0.01 0.01 0 0.01 0 0 0 0 0 0 0.01 0.01 35.037 0.107
2 0.06 0.03 0.03 0.0278 35 0.01 0.01 0 0 0.01 0 0 0 0 0 0.01 0.01 35.046 0.13
2 0.06 0.0323  0.03 0.03 35 0.01 0.01 0 0 0 0.01 0 0 0 0 0.01 0.01 35.078 0.224
2 0.06 0.03 0.0323 0.03 35 0.01 0.01 0 0 0 0 0.01 0 0 0 0.01 0.01 35.07 0.2
2 0.06 0.03 0.03 0.0323 35 0.01 0.01 0 0 0 0 0 0.01 0 0 0.01 0.01 35.062 0.176
2 0.0578 0.03 0.03 0.03 35 0.01 0.01 0 0 0 0 0 0 0.01 0 0.01 0.01 35.481 1.375
2 0.0623  0.03 0.03 0.03 35 0.01 0.01 0 0 0 0 0 0 0 0.01 0.01 0.01 34.637 —1.037
2 0.06 0.03 0.03 0.03 349775 0.01 0.01 0 0 0 0 0 0 0 0 0.1 0.01 35.016 0.045
2 0.06 0.03 0.03 0.03 35.0225 0.01 0.01 0 0 0 0 0 0 0 0 0.01 0.1 35.091 0.261
1.9775 0.0623 0.0278 0.0278 0.0278 34.9775 0.1 0.01 0.01 0.01 0.01 0 0 0 0 0.01 0.1 0.01 34427 —1.636
1.8775 0.0648 0.0253 0.0253 0.0253 34.8775 0.5 0.01 0.02 0.02 0.02 0 0 0 0 0.02 0.5 0.01 33.226 —5.068
2.0225 0.0553 0.0348 0.0348 0.0348 35.1225 0.01 0.1 0 0 0 0.02 0.02 0.02 0.02 0 0.01 0.5 36.424 4.069
Fuzzy  2.003 0.0603 0.0303 0.0303 0.0303 35.003 0.01 0.01 0 0 0 0 0 0 0 0 0.01 0.01 35.082 0.235
case 1.994 0.0603 0.0303 0.0303 0.0303 35.003 0.1 0.01 0 0 0 0 0 0 0 0 0.01 0.01 35.031 0.089
for A= 2.039 0.0603 0.0303 0.0303 0.0303 35.003 0.01 0.1 0 0 0 0 0 0 0 0 0.01 0.01 35.286 0.818
0.2 2.003 0.0603 0.0294 0.0303 0.0303 35.003 0.01 0.01 0.01 0 0 0 0 0 0 0 0.01 0.01 35.072 0.206
2.003 0.0603 0.0303 0.0294 0.0303 35.003 0.01 0.01 0 0.01 0 0 0 0 0 0 0.01 0.01 35.076 0.216
2.003 0.0603 0.0303 0.0303 0.0294 35.003 0.01 0.01 0 0 0.01 0 0 0 0 0 0.01 0.01 35.079 0.225
2.003 0.0603 0.0339 0.0303 0.0303 35.003 0.01 0.01 0 0 0 0.01 0 0 0 0 0.01 0.01 35.122 0.348
2.003 0.0603 0.0303 0.0339 0.0303 35.003 0.01 0.01 0 0 0 0 0.01 0 0 0 0.01 0.01 35.108 0.309
2.003 0.0603 0.0303 0.0303 0.0339 35.003 0.01 0.01 0 0 0 0 0 0.01 0 0 0.01 0.01 35.095 0.271
2.003 0.0594 0.0303 0.0303 0.0303 35.003 0.01 0.01 0 0 0 0 0 0 0.01 0 0.01 0.01 35.51 1.457
2.003 0.0639 0.0303 0.0303 0.0303 35.003 0.01 0.01 0 0 0 0 0 0 0 0.01 0.01 0.01 34.665 —0.958
2.003 0.0603 0.0303 0.0303 0.0303 34.994 0.01 0.01 0 0 0 0 0 0 0 0 0.1 0.01 35.067 0.191
2.003 0.0603 0.0303 0.0303 0.0303 35.039 0.01 0.01 0 0 0 0 0 0 0 0 0.01 0.1 35.143 0.407
1.994 0.0639 0.0294 0.0294 0.0294 34.994 0.1 0.01 0.01 0.01 0.01 0 0 0 0 0.01 0.1 0.01 34.58 —1.199
1.954 0.0679 0.0284 0.0284 0.0284 34.954 0.5 0.01 0.02 0.02 0.02 0 0 0 0 0.02 0.5 0.01 33.825 —3.357
2.039 0.0584 0.0379 0.0379 0.0379 35.199 0.01 0.1 0 0 0 0.02 0.02 0.02 0.02 0 0.01 0.5 36.727 4.934
Fuzzy  1.997 0.0597 0.0297 0.0297 0.0297 34.997 0.01 0.01 0 0 0 0 0 0 0 0 0.01 0.01 35.025 0.071
case 1.961 0.0597 0.0297 0.0297 0.0297 34.997 0.1 0.01 0 0 0 0 0 0 0 0 0.01 0.01 34.821 —0.511
for A= 2.006 0.0597 0.0297 0.0297 0.0297 34.997 0.01 0.1 0 0 0 0 0 0 0 0 0.01 0.01 35.076 0.217
0.8 1.997 0.0597 0.0261 0.0297 0.0297 34.997 0.01 0.01 0.01 0 0 0 0 0 0 0 0.01 0.01 34986 —0.041
1.997 0.0597 0.0297 0.0261 0.0297 34.997 0.01 0.01 0 0.01 0 0 0 0 0 0 0.01 0.01 34999 —0.003
1.997 0.0597 0.0297 0.0297 0.0261 34.997 0.01 0.01 0 0 0.01 0 0 0 0 0 0.01 0.01 35.012 0.035
1.997 0.0597 0.0306 0.0297 0.0297 34.997 0.01 0.01 0 0 0 0.01 0 0 0 0 0.01 0.01 35.035 0.1
1.997 0.0597 0.0297 0.0306 0.0297 34.997 0.01 0.01 0 0 0 0 0.01 0 0 0 0.01 0.01 35.031 0.09
1.997 0.0597 0.0297 0.0297 0.0306 34.997 0.01 0.01 0 0 0 0 0 0.01 0 0 0.01 0.01 35.028 0.08
1.997 0.0561 0.0297 0.0297 0.0297 34.997 0.01 0.01 0 0 0 0 0 0 0.01 0 0.01 0.01 35.451 1.29

(continued on next page)
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Table 1 (continued)

—1.118

—0.101

34.609
34.965
35.04

34.274
32.628
36.118

0.01
0.01

0.01
0.1

0.1

0.01

0.114

—2.074
—6.777

0.01
0.1

0.01
0.01
0.5

0.01
0.02

0.01
0.02

0.01

0.02

0.01
0.02

0.5

— o = = —

0.01
0.01
0.01

0.1

34.997
34.961
35.006
34.961
34.801

0.0606 0.0297 0.0297 0.0297

1.997
1.997
1.997
1.961

0.0597 0.0297 0.0297 0.0297
0.0597 0.0297 0.0297 0.0297

0.0606 0.0261

0.0261
0.0221

0.0261
0.0221

0.5

0.0616  0.0221

1.801
2.006
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3.194

0.02 0.02 0.01

0.02

0.02

0.1

0.01

0.0316 0.0316 0.0316 35.046

0.0521

From Tables 1-3, if w;=w, and if w— 0, then the fuzzy
case of Theorem 4.1 will approach the crisp case. It implies
that if w smaller is, then the estimated intrinsic value of
fuzzy case is getting closer to crisp case.

Furthermore, from the numerical results, we find that if A
is closer to 0, then the estimated intrinsic value \7& is
greater; if A is closer to 1, then the estimated intrinsic value
‘7& is smaller.

6. Discussions

Because we are interested in applying the fuzzy logic to
solve the classical DCF model for valuation in which the
cash flows and the discount rate are uncertainty, we have
developed a FDCF model that allows us to employ
triangular fuzzy numbers to explicitly analyze and provide
insights into how the intrinsic value could be impacted by
the vague levels of cash flow, growth rate, discount rate, and
future selling price. In conclusion, our work has provided
the following aspects for the proposed FDCF model.

6.1. The relation between Theorem 4.1 and crisp case

(in (3.3))

(a) In (4.14), (4.15), if we assume w;=w,=ws=wg=
w7=wg=0 and w;3=wj; =0 for all j, then we can obtain

~ = "D 1+ 1+ (1 + .
Gu(@) = Gyl = 320 gﬂEHi)zn) (+g)

t=1

. - P
Hy (o) = Hy(a) = m

From Theorem 4.1 (1°),
d(Vy,0;2) = d(G,0; 2) + d(H,0; 2)
- JI[AGL@ + (1 = DGyl + 2 (@)
+0(1 — MHy(a)]da
= Vg (in(3.3)).

(b) In crisp case, if the investor only considers to hold the
specific asset until the nth year, by assuming P, =0, then we
can obtain

"D
V* — 1 ,
0 Z(l + k'

t=1

D,=D,_(1+gy),t=12,....n.

(c) Considering the fuzzy case in Theorem 4.1, if P,=0,
w7=wg=0, then P, =0 (i.e. a fuzzy point at 0). By (4.11)
and (4.12), we can obtain G (in (4.11)) and H=0 (in
(4.12)). Thus, from Theorem 4.1 (1°), the fuzzy intrinsic
value is V = G(+)0. That is the estimates intrinsic value
Ve, =d(Vy,0; )= d(G,0; 2)= G (in Theorem 4.1 (2°)).



Table 2
The numerical comparisons of crisp case and fuzzy case for n=2 with different 4 levels

Crisp Dy k 81 82 83 P Vs

n
case 2 0.06 0.03 0.03 — 35 34.982
Fuzzy Dy, k; en g5 g5 o W) (07} w13 w3 w33 W14 [N W34 ws w6 w7 wg Vos (%)
case 2 0.06 0.03 0.03 - 35 0 0 0 0 - 0 0 - 0 0 0 0 34982 —0.052
forAi= 2 0.06 0.03 0.03 - 35 0.01 0.01 0 0 - 0 0 - 0 0 0.01 0.01 34982 —0.052
0.5 1.9775 0.06 0.03 0.03 - 35 0.1 0.01 0 0 - 0 0 - 0 0 0.01 0.01 34.896 —0.298
2.0225 0.06 0.03 0.03 - 35 0.01 0.1 0 0 - 0 0 - 0 0 0.01 0.01 35.068 0.194
2 0.06 0.0278 0.03 - 35 0.01 0.01 0.01 0 - 0 0 - 0 0 0.01 0.01 34965 —0.1
2 0.06 0.03 0.0278 - 35 0.01 0.01 0 0.01 - 0 0 - 0 0 0.01 0.01 34973 —0.076
2 0.06 0.0323 0.03 - 35 0.01 0.01 0 0 - 0.01 0 - 0 0 0.01 0.01 34998 —0.004
2 0.06 0.03 0.0323 - 35 0.01 0.01 0 0 - 0 0.01 - 0 0 0.01 0.01 34.99 —0.029
2 0.0578 0.03 0.03 - 35 0.01 0.01 0 0 - 0 0 - 0.01 0 0.01 0.01 35.273 0.781
2 0.0623 0.03 0.03 - 35 0.01 0.01 0 0 - 0 0 - 0 0.01 0.01 0.01 34.696 —0.869
2 0.06 0.03 0.03 - 349775 0.01 0.01 0 0 - 0 0 - 0 0 0.1 0.01 34942 —0.167
2 0.06 0.03 0.03 - 35.0225  0.01 0.01 0 0 - 0 0 - 0 0 0.01 0.1 35.022 0.062
1.9775 0.0623 0.0278 0.0278 - 349775 0.1 0.01 0.01 0.01 - 0 0 - 0 0.01 0.1 0.01 34547 —1.295
1.8775 0.0648 0.0253 0.0253 - 348775 0.5 0.01 0.02 0.02 - 0 0 - 0 0.02 0.5 0.01 33.666 —3.812
2.0225 0.0553 0.0348 0.0348 - 35.1225  0.01 0.1 0 0 - 0.02 0.02 — 0.02 0 0.01 0.5 35971 2.774
Fuzzy 2003 00603 00303 00303 - 35003 001 001 0 0 - 0 0 - 0 0 001 001 35002  0.005
case 1.994 0.0603 0.0303 0.0303 - 35.003 0.1 0.01 0 0 - 0 0 - 0 0 0.01 0.01 34967 —0.093
for A= 2.039 0.0603 0.0303 0.0303 - 35.003 0.01 0.1 0 0 - 0 0 - 0 0 0.01 0.01 35.14 0.4
0.2 2.003 0.0603 0.0294 0.0303 - 35.003 0.01 0.01 0.01 0 - 0 0 - 0 0 0.01 0.01 34995 —0.014
2.003 0.0603 0.0303 0.0294 - 35.003 0.01 0.01 0 0.01 - 0 0 - 0 0 0.01 0.01 34999 —0.004
2.003 0.0603 0.0339 0.0303 - 35.003 0.01 0.01 0 0 - 0.01 0 - 0 0 0.01 0.01 35.029 0.082
2.003 0.0603 0.0303 0.0339 - 35.003 0.01 0.01 0 0 - 0 0.01 - 0 0 0.01 0.01 35.015 0.043
2.003 0.0594 0.0303 0.0303 - 35.003 0.01 0.01 0 0 - 0 0 - 0.01 0 0.01 0.01 35.294 0.839
2.003 0.0639 0.0303 0.0303 - 35.003 0.01 0.01 0 0 - 0 0 - 0 0.01 0.01 0.01 34715 —0.813
2.003 0.0603 0.0303 0.0303 - 34.994 0.01 0.01 0 0 - 0 0 - 0 0 0.1 0.01 34986 —0.04
2.003 0.0603 0.0303 0.0303 - 35.039 0.01 0.01 0 0 - 0 0 - 0 0 0.01 0.1 35.066 0.189
1.994 0.0639 0.0294 0.0294 - 34.994 0.1 0.01 0.01 0.01 - 0 0 - 0 0.01 0.1 0.01 34.656 —0.984
1.954 0.0679 0.0284 0.0284 - 34.954 0.5 0.01 0.02 0.02 - 0 0 - 0 0.02 0.5 0.01 34.114 —2.531
2.039 0.0584 0.0379 0.0379 - 35.199 0.01 0.1 0 0 — 0.02 0.02 - 0.02 0 0.01 0.5 36.211 3.461
Fuzzy 1997 00597 00297 00297 - 34997 001 001 0 0 - 0 0 - 0 0 001 001 34962 —0.11
case 1.961 0.0597 0.0297 0.0297 - 34.997 0.1 0.01 0 0 - 0 0 - 0 0 0.01 0.01 34824 —0.504
for A= 2.006 0.0597 0.0297 0.0297 - 34.997 0.01 0.1 0 0 - 0 0 - 0 0 0.01 0.01 34996 —0.011
0.8 1.997 0.0597 0.0261 0.0297 - 34.997 0.01 0.01 0.01 0 - 0 0 - 0 0 0.01 0.01 34935 —0.186
1.997 0.0597 0.0297 0.0261 - 34.997 0.01 0.01 0 0.01 - 0 0 - 0 0 0.01 0.01 34948 —0.147
1.997 0.0597 0.0306 0.0297 - 34.997 0.01 0.01 0 0 - 0.01 0 - 0 0 0.01 0.01 34968 —0.091
1.997 0.0597 0.0297 0.0306 - 34.997 0.01 0.01 0 0 - 0 0.01 - 0 0 0.01 0.01 34965 —0.1
1.997 0.0561 0.0297 0.0297 - 34.997 0.01 0.01 0 0 - 0 0 - 0.01 0 0.01 0.01 35.253 0.722
1.997 0.0606 0.0297 0.0297 - 34.997 0.01 0.01 0 0 - 0 0 - 0 0.01 0.01 0.01 34.676 —0.926
1.997 0.0597 0.0297 0.0297 - 34.961 0.01 0.01 0 0 - 0 0 - 0 0 0.1 0.01 34897 —0.293
1.997 0.0597 0.0297 0.0297 - 35.006 0.01 0.01 0 0 - 0 0 - 0 0 0.01 0.1 34978 —0.064
1.961 0.0606 0.0261 0.0261 - 34.961 0.1 0.01 0.01 0.01 - 0 0 - 0 0.01 0.1 0.01 34.438 —1.607
1.801 0.0616 0.0221 0.0221 - 34.801 0.5 0.01 0.02 0.02 - 0 0 - 0 0.02 0.5 0.01 33.218 —5.092
2.006 0.0521 0.0316 0.0316 - 35.046 0.01 0.1 0 0 - 0.02 0.02 - 0.02 0 0.01 0.5 35.728 2.081
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Table 3

The numerical comparisons of crisp case and fuzzy case for n=1 with different A levels

Crisp Do k &1 82 83 P, Vo

case 2 0.06 0.03 - - 35 34.962

Fuzzy Dy, k} g gn gn ) w) 3% w13 w3 w33 W14 Wy W34 ws We w7 wg Vos (%)

case 2 0.06 0.03 - - 35 0 0 0 - - 0 - - 0 0 0 0 34962 —0.108

forA= 2 0.06 0.03 - - 35 0.01 0.01 0 - - 0 - - 0 0 0.01 0.01 34962 —0.108

0.5 1.9775 0.06 0.03 - - 35 0.1 0.01 0 - - 0 - - 0 0 0.01 0.01 34919 —0.233
2.0225 0.06 0.03 - - 35 0.01 0.1 0 - - 0 - - 0 0 0.01 0.01 35.006 0.017
2 0.06 0.0278 - - 35 0.01 0.01 0.01 - - 0 - - 0 0 0.01 0.01 34954 —0.132
2 0.06 0.0323 - - 35 0.01 0.01 0 - - 0.01 - - 0 0 0.01 0.01 34971 —0.083
2 0.0578 0.03 - - 35 0.01 0.01 0 - - 0 - - 0.01 0 0.01 0.01 35.112 0.319
2 0.0623  0.03 - - 35 0.01 0.01 0 - - 0 - - 0 0.01 0.01 0.01 34815 —0.529
2 0.06 0.03 - - 349775 0.01 0.01 0 - - 0 - - 0 0 0.1 0.01 34.92 —0.229
2 0.06 0.03 - - 35.0225 0.01 0.01 0 - - 0 - - 0 0 0.01 0.1 35.005 0.014
1.9775 0.0623 0.0278 - - 349775 0.1 0.01 0.01 - - 0 - - 0 0.01 0.1 0.01 34721 —0.797
1.8775 0.0648 0.0253 - - 348775 0.5 0.01 0.02 - - 0 - - 0 0.02 0.5 0.01 34.175 —2.356
2.0225 0.0553 0.0348 - - 35.1225 0.01 0.1 0 - - 0.02 - - 0.02 0 0.01 0.5 35.577 1.649

Fuzzy 2.003  0.0603 0.0303 - - 35.003  0.01 0.01 0 - - 0 - - 0 0 0.01 0.01 34975 —0.072

case 1.994  0.0603 0.0303 - - 35.003 0.1 0.01 0 - - 0 - - 0 0 0.01 0.01 34957 —0.122

for A= 2.039  0.0603 0.0303 - - 35.003  0.01 0.1 0 - - 0 - - 0 0 0.01 0.01 35.045 0.128

0.2 2.003  0.0603 0.0294 - - 35.003  0.01 0.01 0.01 - - 0 - - 0 0 0.01 0.01 34972 —0.081
2.003  0.0603 0.0339 - - 35.003  0.01 0.01 0 - - 0.01 - - 0 0 0.01 0.01 34989 —0.033
2.003  0.0594 0.0303 - - 35.003  0.01 0.01 0 - - 0 - - 0.01 0 0.01 0.01 35.124 0.355
2.003  0.0639 0.0303 - - 35.003  0.01 0.01 0 - - 0 - - 0 0.01 0.01 0.01 34.827 —0.494
2.003  0.0603 0.0303 - - 34994  0.01 0.01 0 - - 0 - - 0 0 0.1 0.01 34958 —0.12
2.003  0.0603 0.0303 - - 35.039  0.01 0.01 0 - - 0 - - 0 0 0.01 0.1 35.043 0.122
1.994  0.0639 0.0294 - - 34994 0.1 0.01 0.01 - - 0 - - 0 0.01 0.1 0.01 34.79 —0.601
1.954  0.0679 0.0284 - - 34954 05 0.01 0.02 - - 0 - - 0 0.02 0.5 0.01 34474 —1.504
2.039  0.0584 0.0379 - - 35.199  0.01 0.1 0 - - 0.02 - - 0.02 0 0.01 0.5 35.768 2.194

Fuzzy 1997 0.0597 0.0297 - - 34997  0.01 0.01 0 - - 0 - - 0 0 0.01 0.01 34.95 —0.144

case 1.961  0.0597 0.0297 - - 34997 0.1 0.01 0 - - 0 - - 0 0 0.01 0.01 34.88 —0.344

for A= 2.006 0.0597 0.0297 - - 34997  0.01 0.1 0 - - 0 - - 0 0 0.01 0.01 34967 —0.094

0.8 1.997  0.0597 0.0261 - - 34997  0.01 0.01 0.01 - - 0 - - 0 0 0.01 0.01 34936 —0.182
1.997  0.0597 0.0306 - - 34997  0.01 0.01 0 - - 0.01 - - 0 0 0.01 0.01 34953 —0.134
1.997  0.0561 0.0297 - - 34997  0.01 0.01 0 - - 0 - - 0.01 0 0.01 0.01 35.099 0.283
1.997  0.0606 0.0297 - - 34997  0.01 0.01 0 - - 0 - - 0 0.01 0.01 0.01 34802 —0.565
1.997  0.0597 0.0297 - - 34.961 0.01 0.01 0 - - 0 - - 0 0 0.1 0.01 34.882 —0.338
1.997  0.0597 0.0297 - - 35.006  0.01 0.01 0 - - 0 - - 0 0 0.01 0.1 34967 —0.095
1.961  0.0606 0.0261 - - 34.961 0.1 0.01 0.01 - - 0 - - 0 0.01 0.1 0.01 34.652 —0.993
1.801  0.0616 0.0221 - - 34.801 0.5 0.01 0.02 - - 0 - - 0 0.02 0.5 0.01 33877 —3.209
2.006 0.0521 0.0316 - - 35.046  0.01 0.1 0 - - 0.02 - - 0.02 0 0.01 0.5 35.386 1.102
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6.2. The explanation of using the A-signed distance

In this paper, the use of A-signed distance is based on the
consideration of natural extension. The reasons for such
extension are interpreted as follows.

By Yao and Wu (2000), the signed distance of a on R
measured from the origin 0 is defined by dy(a,0)=a that can
be acquired by the characteristic of a real line, and such a
viewpoint can be extended to that of the signed distance of
fuzzy sets on Fs. Because fuzzy set D(EFS) is not a real
number, we must consider the signed distance from the
membership function curve of D to Y-axis (see Fig. 1) as the
signed distance of D to 0, which is described as follows: By
the a-cut method, for each a €[0,1], considering the «-cut
of D, we have a-level set [Dy («), Dy(«)] and from Fig. 1, we
can obtain the end points of line segment PQ, P(Dy (c), @)
and Q(Dy(w), ), which are on the membership function
curve of D. The X-coordinates of the end points (P and Q)
are Dy (o) and Dy(«), which are corresponding to the end
points of a-level set [Dy (a), Dy(a)]. For each A€ (0,1), the
weighted average of Dy (a) and DU(a) denoted by ADL(a) +
(1—)Dy(a) is the inner point of «a-level set
[Dy (), Dy(a)], and R(ADy () + (1 — )Dy(a), ) is the
inner point of line segment PQ (see Fig. 1), hence the A-
signed distance from interval [DL(a),DU(a)] to origin 0 is
defined as the signed distance from inner point ADy (@) +
(1—)Dy(a) to origin 0. By Yao and Wu’s (2000)
definition, we can obtain dy([Dy (@), Dy(a)],0; )=
D (a) + (1 — A)Dy(a). Hence, for each a€[0,1], we
have the following one-to-one mapping relations:

[Dr.(a), Dy(@); a]  [Dy.(@), Dy(@)] <> PQ and 0 0.
Thus, the A-signed distance from [Dy (a), Dy(a);a] to 0
can be defined as d([Dy («), Dy(a);al,0; )= dy([Dy (),
Dy(a)],0; 2) = ADy (@) + (1 = DDy (e).(3%))

The Eq. ((3%)) is denoted as the signed distance from
inner point R(AD; (a) + (1 — A)Dy(w), ) of PQ to Y-axis
(see Fig. 1). Because D EF,, Eq. ((3%)) represents a
continuous function with respect to o, where 0<«a<1. In
addition, since « only varies during the interval [0,1], the A-
signed distance from fuzzy set D to 0 can be found by
calculating the mean value of signed distance from the inner
point (R(ADy (a) + (1 — )Dy(a), @)) of PQ to Y-axis.
Therefore, by Definition 2.4, we have

1
dD,0;2) = J [ADy (o) + (1 — )Dy(a)]de.
0

Such a function can be regarded as the A-signed distance
from fuzzy set D to fuzzy point 0. From Remark 2.12, for
each A€(0,1), d(a,0; A) = a= dy(a,0; A) for all a € R, and
family of all fuzzy points CF, thus the A-signed distance
(d) on F is one extension of the A-signed distance (dy) on R.
In addition, by Properties 2.7, 2.8 and Remark 2.12, for
A€ (0,1), fuzzy system (F§, d, <, =) is also one extension of
a real system (R, dy, <,=).

6.3. The results of using the A-signed distance method to
defuzzify Dy (in (4.3)), §; (in (4.4)), k (in (4.5), and P,
(in (4.6)) with different A levels

When 4<0.5, 4<0.5<(1—2), by Fig. 1, for each
a€[0,1], the point AD; (a) + (1 — N)Dy(e) in [Dy (a), Dy(
«)] will be closer to the right-end point DU(a). In addition,
because 0 < Dy (a) < Dy(«) for all @ €[0,1], we have

ADL () + (1 — D)Dy(a)
= Dy(a) — A(Dy(a) — Dy.(a))> Dy()
— 0.5(Dy(a) — Dy(@))
= 0.5D () + 0.5Dy(0)
for all «€[0,1]. Accordingly,
D} =d(D,0; 1)

1
- J DDy(@) + (1 — MDy(e)]lda
0

1
> J [0.5D; (@) + 0.5Dy(c)]dex
0

=d(D,0;0.5) = D 5.
Contrarily, when A>0.5, for each a €[0,1],
ADy () + (1 — )Dy(e) < 0.5D; () + 0.5Dy (),

and then D} < D{ 5. Based on the above derivations, we can
obtain the same relations corresponding to Dy, 8 k,and P,
as follows.

_ When 2<0.5, then Dg; > D s, /3> 8jo.5+ ki > ko5, and
P, > Pys; when 1>0.5, then Dg; <Dgs. &5 <8u.s:
ki <kgs, and P,; <Pys.

The above-mentioned relations may refer to the numeri-
cal results in Tables 1-3.

Therefore, in our FDCF model, it implies that the use of A
level can be regarded as a simple concept describing the
investor’s attitude to risk. That is, if 1<0.5, then we may
denote that such an investor is an optimist when estimating
the values of fuzzy numbers such as fuzzy cash flow (D),
fuzzy growth rate (g;), fuzzy discount rate (IE), and fuzzy
future selling price (P,,); if A> 0.5, then such an investor is a
pessimist when estimating them. Also, if A=0.5, then such
an investor is a neutral to risk.

7. Concluding remarks

Valuation analysis is quite import to obtain a ‘fair value’
for an asset but also to take into account the investor’s risk
aversion. In this paper, we have proposed a more practical
tool to deal with uncertainty and risk for a valuation model.
This study extended the classical DCF model by developing
a fuzzy logic system that it takes vague cash flow, growth
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rate, and discount rate into account in order to explicitly
discuss the more realistic valuation model. In such a FDCF
model, the uncertain information will be fuzzified as
triangular fuzzy numbers so that it would be useful for
typical investors to analyze the intrinsic value of a specific
asset. We also find that the FDCF model is one extension of
the classical (crisp) DCF model.

Furthermore, the success of this model is demonstrated
through numerical examples that a novel fuzzy philosophy
achieves a more reasonable operation on valuation, and it
reveals some properties leading to a good method of helping
the typical investors to master their assets’ values.
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